
OPTIMA-RES-A

Residential VAV System Box Data Sheet

Table of Contents

Description
Design1
Controls2
Factory Settings
Basic Functional Characteristics
Basic Parameters and Features2
Master/Slave Configuration2
Dimensions4
Ordering Code4
Accessories5
RC-C3DOC5
MZ3-Touch
EC-Basic – CO2 + Temperature Room Controller 6
CO2RT6
ZTH-EU
Technical Parameters
Solutions for Room Controls
with VAV Ventilation Systems
Ventilation Control Panel
EC-Basic – CO ₂ + Temperature Room Controller
RC-C3DOC15
Installation, Maintenance & Operation22
Transport & Storage
Supplement
Related Products

Good to know

Current information on all products is available at design.systemair.com

Description

OPTIMA-RES-A is a compact system of supply and extract VAV controllers intended for ventilation control of residential premises. The basic functionality is continuous supply and extract air flow volume control in master/slave operation mode. Additionally, it can be switched into override operation modes like open or close damper, or minimum or maximum air flow volume control.

Highlights

- Complete VAV supply and extract master/slave solution
- AC 230 V power supply
- Electrical safety elements and connection terminals on board
- · Noise attenuators included
- Fit for installation on surface or into gypsum walls or ceilings
- VAV controllers can be easily detached and mounted in other supply/extract configuration

List of Accessories

Detailed information about accessories for OPTIMA-RES-A is available \mathscr{O} on page 5.

- · RC-C3DOC: Room Controller
- · MZ3-Touch: Ventilation Control Panel
- EC-Basic CO2 + Temperature Room Controller
- CO2RT: CO₂ Room Transmitter
- · ZTH-EU: Service Tool for VAV Controllers

Design

The system of OPTIMA-RES-A system is encased in a galvanised steel box. The system consists of:

- One supply and one extract variable OPTIMA-R air flow controller in a circular galvanised steel body
- Electric part with power supply and control circuitry
- Acoustic attenuation

The VAV controllers are mounted to the circular duct connections by sleeves, so the VAV controllers are easily removable. The system box is equipped with cable pass diaphragms for cables related to power supply, setpoint control signal, feed-back signal and override signal. These cables shall be connected by a service person on site. The corresponding terminals are available according to the wiring diagram.

Controls

The residential VAV system is equipped with BLC4 type compact controllers in the master/slave connection. The controllers use analog input for the setpoint signal and analog output for the feedback signal. The type of the signals is DC 0 V ... 10 V. The VAV controllers are factory calibrated as standard to the air volume indicated in the table below or, upon request, they can be adjusted to site required settings of the V_{\min}/V_{\max} range. The air volumes can also be readjusted on site with the ZTH-EU hand held service tool. If specific air volumes for V_{\min} and V_{\max} would be required, they must be indicated in the ordering code or noted in the order for adequate calibration in the factory.

Factory Settings

Size	<i>V</i> _{min} @ 2	m/s	V _{max} @ 9	m/s	V _{nom} @ 11 m/s		
(mm)	(m³/h)	(l/s)	(m³/h)	(l/s)	(m³/h)	(l/s)	
100	57	16	254	71	311	86	
125	88	24	398	111	486	135	
160	145	40	651	181	796	221	

Basic Functional Characteristics

Controller type: OPTIMA-RES-A-...BLC4

Basic Parameters and Features

Flow volume adjustment setpoint signal:

Analog input DC 0 V ... 10 V. The Systemair MZ3-Touch room control device is primarily foreseen to be connected to the analog input. It can operate in automatic mode, continuously controlling the air flow volume dependent from temperature, VOC or CO₂ concentration. If switched to manual mode, the air flow setpoint can be adjusted manually in four discrete steps between the preset $V_{\rm min}$ and $V_{\rm max}$ of OPTIMA-RES-A.

Other control devices with 0 V ... 10 V control output can also be used, e.g. Systemair RC-C3DOC.

Controller parameters setup tools: Belimo ZTH-EU

Feedback signal (actual air flow volume): Analog output DC 0 V ... 10 V

Power supply (each VAV controller, secured by transformer on board):

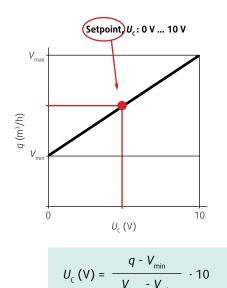
AC 24 V/50 Hz DC 24 V 4 VA 2 W

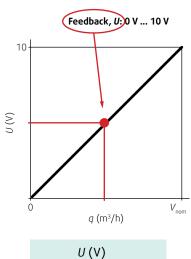
Power supply (whole system): AC 230 V/50 Hz

Protection class (closed system box): IP40

Master/Slave Configuration

The VAV system is configured as master/slave. The supply air VAV controller (the master) reads the flow volume setpoint from an external source like e.g. a room controller or manual setpoint dial. The control range (V_{min}, V_{max}) of the master VAV controller can be adjusted at the factory or on site with the ZTH-EU configuration tool. The feedback signal from master VAV represents the actual measured air flow volume. This signal is connected to the extract air VAV controller (the slave) as the setpoint for the air flow volume. So the air flow volumes of supply and extract air are always equal with high reliability.


 V_{\min} adjustable between 0 and V_{\min} . Lowest possible adjustment is 20% of V_{\min} .


Slave (Extract Air) VAV Controller Setup

 V_{\min} adjusted to 0, shall not be changed.

 V_{max} adjusted equal $V_{\mathrm{nom'}}$ shall not be changed.

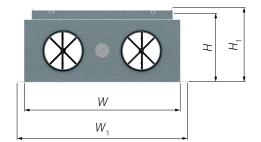
Setpoint/Feedback Signal and Air Flow Volume Calculation for VAV Controller

$$q = \frac{U(V)}{10} \cdot V_{\text{nom}}$$

 U_c : Air flow volume setpoint signal value (range DC 0 V ... 10 V)

q: Air flow volume

 V_{\min} : Minimum adjusted air flow volume (lower limit of control range)


 V_{max} : Maximum adjusted air flow volume (upper limit of control range)

U: Measured air flow volume feedback signal value (range DC 0 ... 10 V)

 V_{nom} : Nominal air flow volume calibrated in factory – not adjustable.

Dimensions

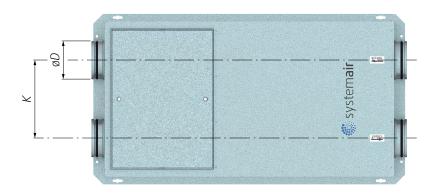
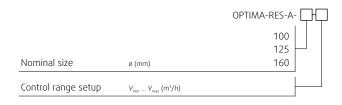



Fig. 1: Dimensions of the OPTIMA-RES-A

Tab. 1: Dimensions of the OPTIMA-RES-A

DN	øD	K	W	W ₁	Н	H ₁	L	L ₁	m	v
(mm)									(kg)	(I)
100	98	250	495	555	200	225	1080	1170	25	147
125	123	280	550	610	235	260	1180	1270	29	202
160	157,5	320	640	700	282	306	1190	1280	35	275

Ordering Code

Example of the Ordering Code

OPTIMA-RES-A-125-130-310

Residential VAV control system of size 125, control range 130 m 3 /h (V_{\min}) up to 310 m 3 /h (V_{\max})

Accessories

RC-C3DOC

Room Controller

Art. No.: 27142

Complete pre-programmed room controller intended to control heating, cooling, CO₂ and other physical parameters in a zone control system.

MZ3-Touch

Ventilation Control Panel

Art. No.: 92690

- Positioner and controller for comfort ventilation with a touch panel.
- · Design according to Feller EDIZIOdue®.
- · Manual operation with 4 steps.
- AUTO operation: The controller activates the ventilation based on controls curve.
- · Automatic reset of the party air level.
- One DC 0 V ... 10 V controls output to control the ventilation system. One DC 0 V ... 10 V input to measure CO₂ or other sensors.

EC-Basic - CO2 + Temperature Room Controller

Art.No. 24808

- For simultaneous control of the room temperature and the CO₂ concentration (on-board sensors) based on priority of the value with the higher control difference.
- · Pre-adjustable heating or cooling control loop.
- One DC 0 V ... 10 V VAV control output.

CO2RT

CO₂ Room Transmitter

Art. No.: 13704, 14357

Room sensor for measuring carbon dioxide concentration in indoor environments.

ZTH-EU

Service Tool for VAV Controllers

Art. No.: 27655

Configuration and setup tool for VAV controllers.

Technical Parameters

Discharged Sound Power Level

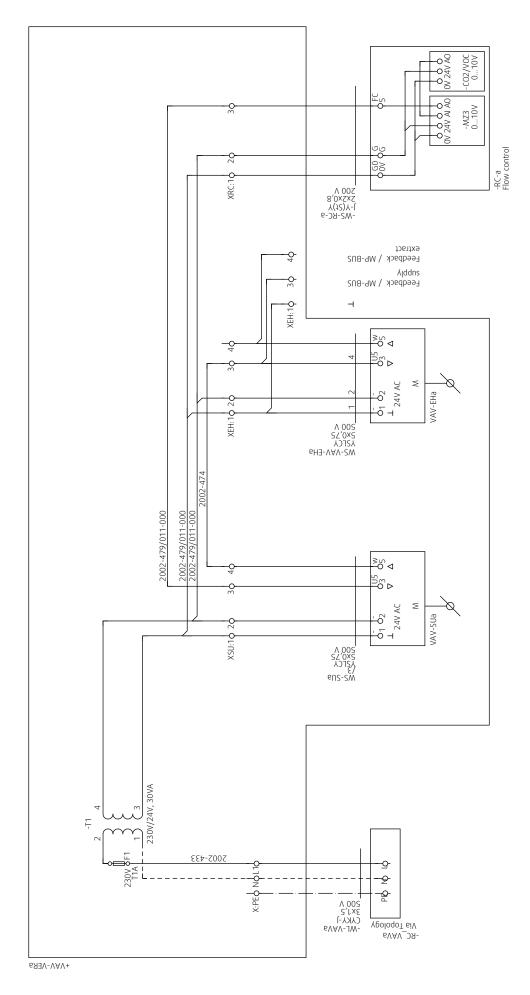
Legend

Ps	Pa	Pressure drop
$q_{_{\mathrm{V}}}$	m³/h l/s	Air flow volume
L _{WA}	dB(A)	A-weighted total discharged sound power level
L _w	dB	Non-weighted total discharged sound power level

OPTIMA-RES-A-100													
Air Flow	Ps	L _{WA}	L _w	Non-Weigl	Non-Weighted Sound Power Level								
m³/h	Pa	dB	dB(A)	63 Hz	125 Hz	250 Hz	500 Hz	1 kHz	2 kHz	4 kHz	8 kHz		
	100	28	42	34	41	20	19	20	9	-8	2		
*	250	32	42	33	41	26	27	28	18	5	15		
@ 2 m/s *	500	37	43	33	41	30	33	35	26	15	25		
9	750	41	45	33	41	33	36	38	30	21	30		
57 V _{min}	1000	43	46	33	41	35	39	41	33	25	34		
	100	28	34	15	32	19	23	25	18	<5	10		
	250	37	40	18	36	28	33	36	27	13	21		
	500	45	47	20	39	34	40	43	34	21	30		
ro.	750	49	51	21	41	38	44	48	38	26	35		
155	1000	52	54	22	42	41	48	51	41	29	39		
	100	31	34	12	30	19	26	29	23	9	19		
*	250	42	44	18	38	30	37	40	32	18	28		
* s/m 9	500	50	52	23	44	38	46	48	39	25	35		
4 %	750	55	56	26	48	43	51	53	43	29	39		
254 V _{max}	1000	58	60	28	50	47	54	56	46	32	42		

NOTE:

The $V_{\rm min}$ can be adjusted from 0 m³/h to $V_{\rm max}$ value from from the table above.


The $V_{\rm max}$ can be adjusted from 20% to 100% of the $V_{\rm max}$ value from the table above.

 $[\]ensuremath{^\star}$ Standard factory air volume setting, if not indicated differently upon order.

OPTIMA-RES-A-125												
Air Flow	P _s	L _{wa}	L _w	Non-Weig	Non-Weighted Sound Power Level							
m³/h	Pa	dB	dB(A)	63 Hz	125 Hz	250 Hz	500 Hz	1 kHz	2 kHz	4 kHz	8 kHz	
	100	27	42	34	41	20	21	19	9	-7	2	
*	250	32	43	36	42	26	29	27	19	5	15	
@ 2 m/s	500	37	45	38	43	31	35	33	26	14	25	
9	750	41	47	39	43	34	38	37	31	20	31	
88 V	1000	43	48	40	44	36	41	39	34	24	35	
	100	26	36	18	35	20	22	23	14	<5	<5	
	250	36	41	20	38	29	33	34	25	11	19	
	500	44	47	22	40	36	41	42	34	20	29	
m	750	49	51	22	42	40	46	47	39	26	35	
243	1000	53	54	23	43	43	49	50	43	29	39	
	100	30	38	20	37	23	25	28	18	5	13	
*	250	41	46	24	43	33	37	39	29	16	24	
* s/m 6	500	49	53	27	48	41	47	47	38	24	32	
0	750	55	57	29	50	46	52	52	43	28	37	
398 V _{max}	1000	58	60	30	52	49	56	56	46	32	41	

OPTIMA-RES-A-160												
Air Flow	Ps	L _{WA}	L _w	Non-Weigl	Non-Weighted Sound Power Level							
m³/h	Pa	dB	dB(A)	63 Hz	125 Hz	250 Hz	500 Hz	1 kHz	2 kHz	4 kHz	8 kHz	
	100	31	47	40	46	24	25	22	11	-5	4	
*	250	37	49	39	48	31	33	32	23	8	18	
@ 2 m/s	500	43	51	39	50	37	39	40	33	18	29	
(a)	750	47	53	39	51	40	43	44	38	24	35	
145 V _{min}	1000	50	55	38	52	42	46	48	42	28	39	
	100	30	38	25	36	22	25	27	18	<5	10	
	250	40	44	26	42	31	36	37	29	15	23	
	500	47	51	27	46	39	43	45	38	23	32	
m	750	52	54	27	49	43	48	50	42	28	38	
398	1000	55	57	28	51	46	51	53	46	32	42	
	100	35	40	26	38	24	29	33	24	11	19	
* 50	250	44	49	29	47	35	39	42	33	20	29	
* s/m 6	500	51	56	33	53	43	47	49	41	27	36	
⊚	750	55	60	35	57	47	52	53	45	31	40	
651 V _{max}	1000	58	63	36	60	51	55	56	48	34	44	

Solutions for Room Controls with VAV Ventilation Systems

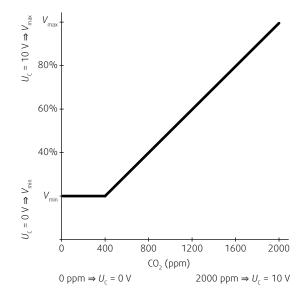
The variable air flow controlled ventilation as a part of demand oriented control of room climate can be integrated in different ways according to various user requirements. The basic part of the climate control is the various room controllers. Each of them fits a different control solution at a corresponding cost level.

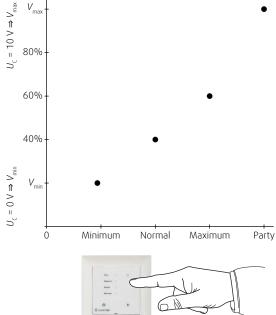
Room Control Solutions, Quick Overview

Rom Controller	RC-C3DOC	Normal Measure Measure	EC-Basic – CO2 + Temperature Room Controller
Number of control loops	3	1	2
Value assigment to control loop	Freely adjustable	Fixed	Fixed
Control loop sequence	Freely adjustable	-	Fixed (simultaneous)
Analog outputs (control setpoints)	Heating valve, Cooling valve, VAV	VAV	VAV
Internal sensors (analog values)	1 × Temperature	-	1 × Temperature, 1 × CO ₂
External sensor analog inputs	1 × Pt1000, 1 × DC 0 V 10 V	1 × DC 0 V 10 V	-
Binary inputs	2 (configurable)	-	-
Controlled values for VAV	Temp. Heat/Temp. Cool, CO ₂ , VOC, Humidity, Others	co ₂ , voc	Temp. Cool, CO ₂
Measurement range of controlled values	Adjustable for CO ₂ , Fixed for others	Fixed	Fixed
VAV control normal operation 0(2) V 10 V = V _{min} V _{max}	Yes	Yes	Yes
VAV control manual override modes available	Open/Close/V _{min} /V _{max} (by BMS)	V _{min} , 40%, 60%, 100% (120 min) of V _{max}	-
Bus communication protocols/ Physical media	Modbus RTU, BACNet MSTP/RS485	-	-

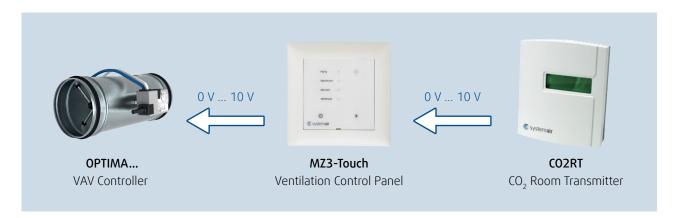
MZ3-Touch

Ventilation Control Panel


For VAV air flow control based on a single physical value like CO₂ or VOC concentration.

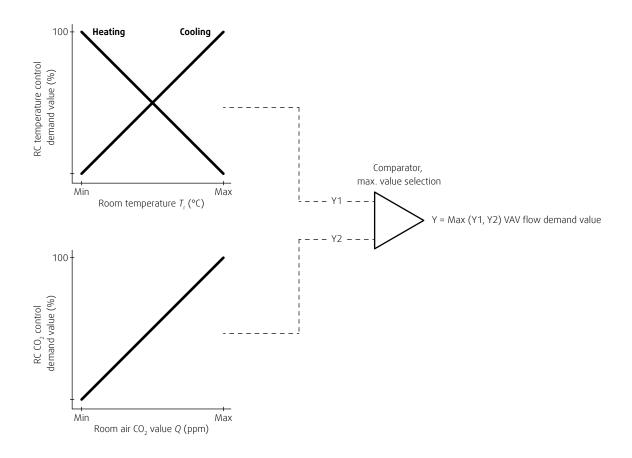

Functions

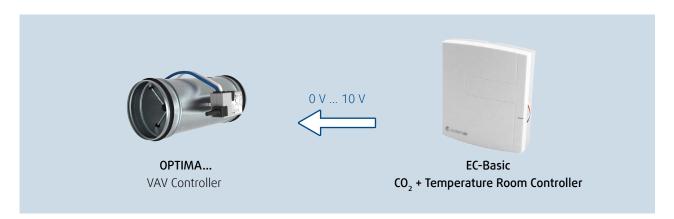
The room controller can set the air flow volume on the VAV controller by the 0 V ... 10 V signal. The leading value for the control is the concentration of CO_2 , eventually VOC in the air. For the measurement of this value, a separate transmitter shall be used with with a 0 V ... 10 V measurement signal. For CO_2 , it corresponds to 0 ppm ... 2000 ppm. This signal shall be connected to the analog input of the room controller. No setpoint or control parameter adjustments are possible. The operation modes can be adjusted on the room controller by touching the key on the cover plate.


In automatic mode, the ${\rm CO_2}$ concentration influences the air flow setpoint for VAV.

In manual mode, the chosen flow volume level influences the air flow set-point for VAV. The "party" position (V_{max}) is temporary. After 120 minutes, the system changes the position to "Maximum" (60%).

Topology


EC-Basic – CO₂ + Temperature Room Controller


For VAV air flow control based on two physical values, temperature and CO₂ concentration simultaneously.

Functions

The room controller can set the air flow volume on the VAV controller by the 0 V ... 10 V signal. The leading values for the control are the temperature (cooling mode or heating mode) and the concentration of CO_2 in the air. Both values are measured inside the room controller, no additional transmitters shall be connected. The temperature and the CO_2 level are measured and evaluated simultaneously. The one with the currently larger control difference is chosen as the actual control value for the VAV setpoint. The CO_2 control has no set-point or range to adjust. The temperature setpoint can be adjusted manually by a dial on the room controller. The cooling or the heating mode can be preadjusted by jumper switches.

Topology

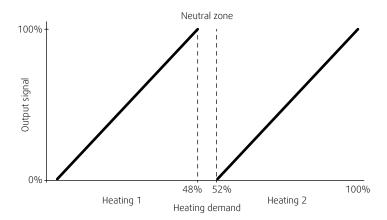
RC-C3DOC

Room Controller

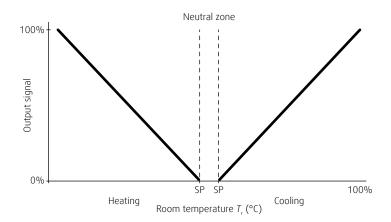
For VAV air flow control based on multiple physical values and control states in different configurable operation modes and sequences.

Functions

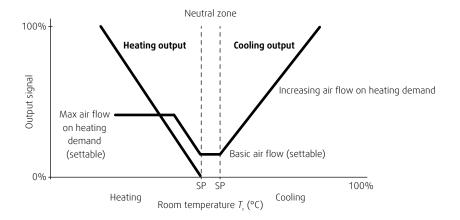
The room controller has the following main control functions:

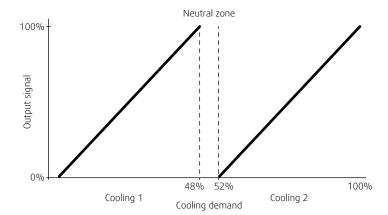

- · Heating control, separate controls of the heating valve and VAV in heating mode
- · Cooling control, separate controls of the cooling valve and VAV in cooling mode
- CO₂ (or VOC, or humidity or other values) control by VAV
- Dew point surveillance protection
- Frost protection
- · Different operation modes switched according to room occupation state
- Energy conservation procedures in case of room control conditions disturbance (e.g. open window)

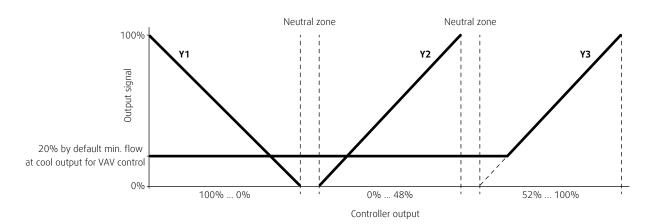
The following measurement and detection capabilities are included or can be connected to the RC:


- · Room temperature measurement on board
- · External temperature measurement connectable via analog input
- External CO₂ (or other value) measurement connectable via analog input
- · External change-over switch connectable via digital input
- · External dew point detection connectable via digital input
- External presence/occupation detection connectable via digital input
- · External window opening detection connectable via digital input

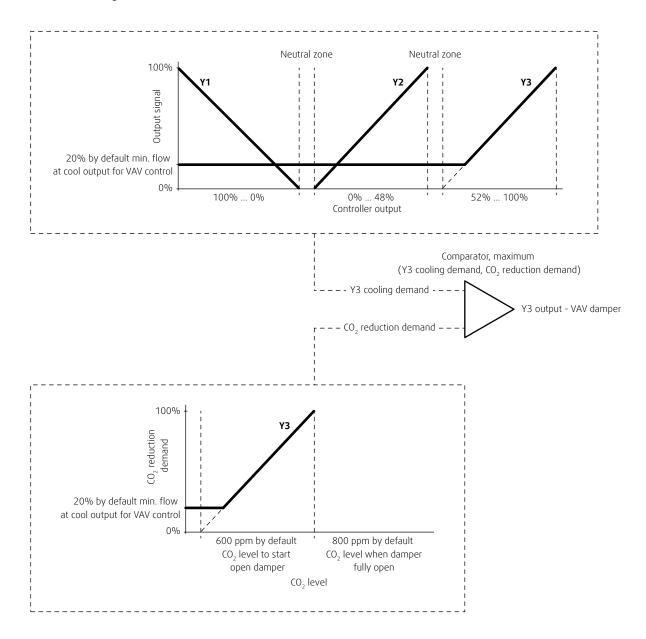
The following control loop sequences can be configured on the RC:


· Heating/Heating

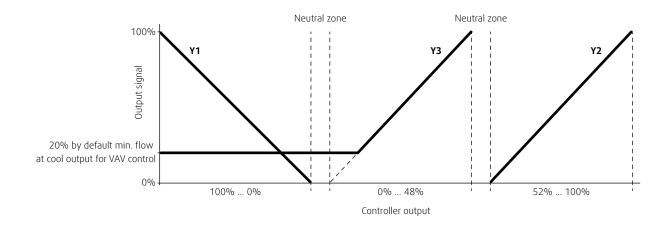

Heating/Cooling


· Heating/Cooling with VAV-control

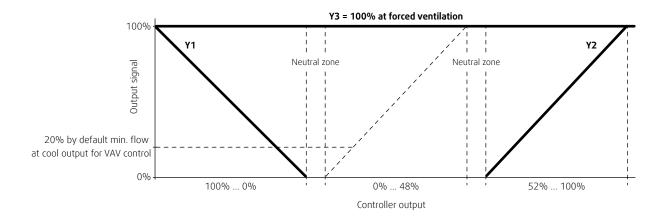
· Cooling/Cooling

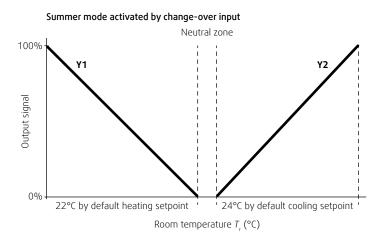


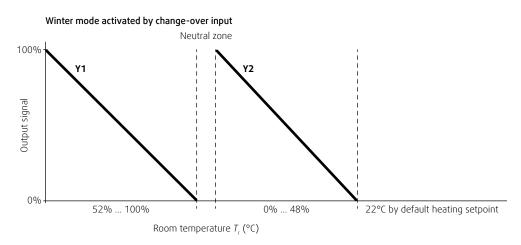
· Heating/Cooling/VAV



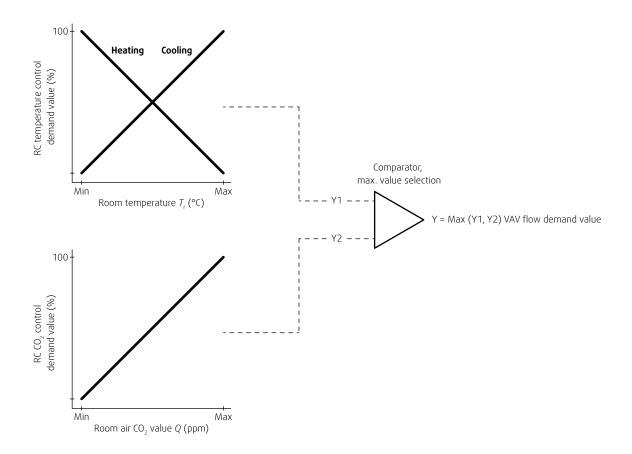
• Heating/Cooling/VAV simultaneaously with CO₂ control


Value with higher control difference becomes control value.


Heating/VAV/Cooling (reversed sequence)



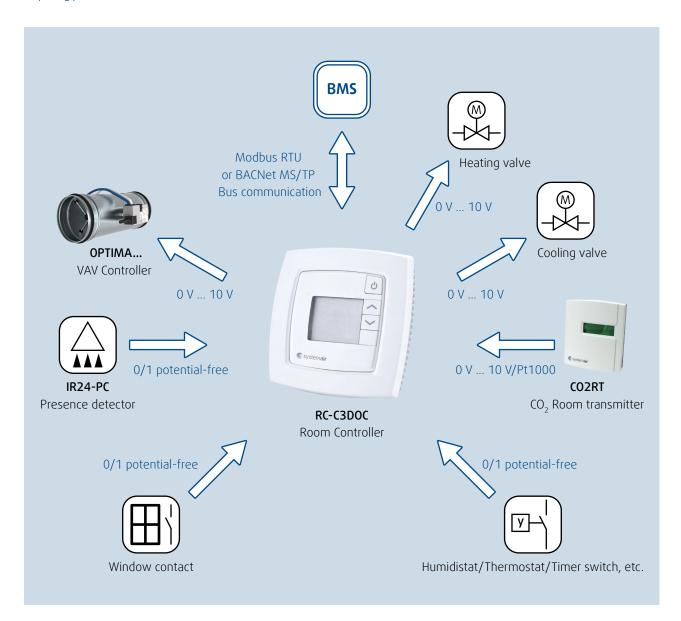
· Heating/Cooling with forced ventilation



· Heating/Cooling or Heating/Heating via change-over

 \cdot Full range change-over determined heating/cooling control by VAV combined with $\mathrm{CO_2}$ control

Adjustment and indication of parameters


The operation parameters, procedures and limits can be adjusted with the help of pushbuttons and indicated by the LCD display on the room controller.

Adjustment and indication are also possible via PC with corresponding hardware and software.

Communication

The room controller has an RS485 on-board communication serial port for which the Modbus RTU or BACNet MS/TP bus communication protocols can be turned on.

Topology

Installation, Maintenance & Operation

Information about installation, maintenance and operation is available in the document \mathscr{S} "UserManual OPTIMA-RES-A".

OPTIMA-RES-A is mounted on the wall or ceiling and is connected to a spiro duct by a rubber gasket tight connection. The system box can be fixed to the wall or ceiling by screws through the holes in four mounting ears on the bottom plate. The electrical connection terminals and VAV controllers can be found under the cover of the system box. The cover can be removed by turning the two locks on the cover plate with a screw driver by 90°. To avoid falling out after unlock the cover plate is tight to the system box by chains. The cover plate in the closed position is sunken into the frame. This enables to attach a plaster board to the outer surface of the cover. So the inspection opening cover can be from the same material and flush with the surrounding wall or ceiling where the system box is installed. The plaster board for the cover must be foreseen with cut-outs to keep the cover locks accessible.

The power supply and signal cables can be pulled into the box through the diaphragm between the supply/extract air connections. The cables must be fixed inside the box on the fixing ridge by cable straps. This avoids excessive mechanical stress on the cables. The cables shall be connected to the spring terminals according to the wiring diagram. To protect the circuitry from overload or short circuit fault, there is a fuse terminal on the power supply.

Dry indoor conditions with an operation temperature range of -20°C to +70°C.

Transport & Storage

Dry indoor conditions with a temperature range of -40°C to +50°C.

Supplement

Any deviations from the technical specifications contained herein as well as the terms should be discussed with the manufacturer. We reserve the right to make any changes to the product without prior notice, provided that these changes do not affect the quality of the product and the required parameters.

Current information on all products is available at \mathscr{O} design.systemair.com

Related Products

OPTIMA-R

VAV Controller

Air flow volume control units for standard air flow velocity range. Product information is available within the \mathscr{O} "DataSheet_OPTIMA-R" technical documentation and on ${\mathscr O}$ Systemair DESIGN.

OPTIMA-LV-R

Low Velocity VAV Controller

Air flow volume control units for low to medium air flow velocity range. Product information is available within the \mathscr{O} "DataSheet_OPTIMA-LV-R" technical documentation and on \mathscr{O} Systemair DESIGN.

